8,143 research outputs found

    An investigation into the effect of floor colour on the behaviour of the horse

    Get PDF
    Adverse reactions of the domestic horse to environmental stimuli can be problematic in training and management. Hesitation and alarm reactions to visual features of the ground can occur in both ridden work and when handling horses. To assess the effect of one visual feature (colour) on the behaviour of the domestic horse, the reactions of sixteen riding horses to eight different coloured mats were recorded. The effect of stimulus position on these reactions was assessed by presenting them in two different positions, either on the ground (where the horses had to walk over them) or against a wall (where the horses walked past them). Each colour/position combination was presented twice in order to assess the effect of previous experience. An alleyway was constructed to allow the horses to be tested unconstrained and freely walking throughout. The time taken to traverse the alleyway and the observed reaction to the colour was recorded

    What horses and humans see: a comparative review

    Get PDF
    Adaptations of the mammalian eye have tailored each to its own particular ecological niche. On the one hand, it would appear that the horse is best served by a system that can keep "half an eye" on everything, while the human benefits from focussing on more specific aspects of the visual array. By adapting a range of techniques, originally used to assess human visual ability, it has been possible to compare the human visual experience with that of the horse. In general, the results of the majority of these comparative studies indicate that the visual capabilities of the horse are broadly inferior to the human equivalents in acuity, accommodation, and colour vision. However, both the horse and human abilities to judge distance and depth perception may be quite comparable while equine vision is certainly superior to that of human's under scotopic conditions. Individual variation in visual ability, which is routinely taken for granted in humans, is also likely to occur in the horse. Such variation would undoubtedly affect equine performance, particularly in terms of expectation of athletic competitive outcomes in modern equitation

    Diffusion in hierarchical systems: A simulation study in models of healthy and diseased muscle tissue

    Get PDF
    PURPOSE: To investigate the sensitivity of diffusion-MR signal to microstructural change in muscle tissue associated with pathology, and recommend optimal acquisition parameters. METHODS: We employ Monte-Carlo simulation of diffusing spins in hierarchical tissue to generate synthetic diffusion-weighted signal curves over a wide range of scan parameters. Curves are analyzed using entropy-a measure of curve complexity. Entropy change between a baseline and various microstructural scenarios is investigated. We find acquisitions that optimize entropy difference in each scenario. RESULTS: Permeability changes have a large effect on the diffusion-weighted signal curve. Muscle fiber atrophy is also important, although differentiating between mechanisms is challenging. Several acquisitions over a range of diffusion times is optimal for imaging microstructural change in muscle tissue. Sensitivity to permeability is optimized for high gradient strengths, but sensitivity to other scenarios is optimal at other values. CONCLUSIONS: The diffusion-attenuated signal is sensitive to the microstructural changes, but the changes are subtle. Taking full advantage of the changes to the overall curve requires a set of acquisitions over a range of diffusion times. Permeability causes the largest changes, but even the very subtle changes associated with fiber radius distribution change the curves more than noise alone

    Experimental Analysis of Algorithms for Coflow Scheduling

    Full text link
    Modern data centers face new scheduling challenges in optimizing job-level performance objectives, where a significant challenge is the scheduling of highly parallel data flows with a common performance goal (e.g., the shuffle operations in MapReduce applications). Chowdhury and Stoica introduced the coflow abstraction to capture these parallel communication patterns, and Chowdhury et al. proposed effective heuristics to schedule coflows efficiently. In our previous paper, we considered the strongly NP-hard problem of minimizing the total weighted completion time of coflows with release dates, and developed the first polynomial-time scheduling algorithms with O(1)-approximation ratios. In this paper, we carry out a comprehensive experimental analysis on a Facebook trace and extensive simulated instances to evaluate the practical performance of several algorithms for coflow scheduling, including the approximation algorithms developed in our previous paper. Our experiments suggest that simple algorithms provide effective approximations of the optimal, and that the performance of our approximation algorithms is relatively robust, near optimal, and always among the best compared with the other algorithms, in both the offline and online settings.Comment: 29 pages, 8 figures, 11 table
    corecore